CHOICE OF STENT IN CAROTID INTERVENTION

DR.V.V.RADHAKRISHNAN.MD DM FACC

- Balloon angioplasty of ECA to prevent stroke is a relatively simple procedure established 30 yrs ago
- Less invasive compared CEA
- Emerged as an alternative procedure to CEA in high surgical risk patients due to medical co morbidities and anatomical complexities
- Over the years the technique got modified from BES,SES,EPD & increasing operator experience

UTILITY OF CAROTID STENTING

- Predictable angiographic result for operator
- Deals with procedural complications
- Dissections & Abrupt vessel closure
- Improve long-term patency by preventing recoil
- Initial non flexible stainless steel balloon expandable stent (palmaz)
- Acute technical success rate high but prone for stent crushing- superficial & by neck movement
- No longer used

- Flexible self expandable stents
- Conform to the tortuous anatomy of carotid bifurcation and change in vessel shape associated with neck movements
- Nitinol ,a nickel titanium alloy is the most widely used material for self expanding stent
- Because it has large elastic range it can withstand significant deformation

CAROTID STENT - DESIGN

- Closed cell or open cell design
- Closed cell- Superior scaffolding but Reduced flexibility
 - Open cell More flexible
- Cobalt based alloy closed cell (wall stent) More rigid stent Excellent scaffolding
 Tapered and non tapered designs available

- Comes in variety of sizes that match the diameter of ICA & CCA(5 to 10 mm)
- Length generally 20 to 40 mm
- The nominal diameter should be 1 to 2 mm larger than the largest treated vessel(CCA)
- Stent should cover the lesion completely
- **Tapered stents**-Reduces the size mismatch between the ICA & CCA & facilitate Rx across the carotid bifurcation- commonly used now

- Tapered stents- commonly used are 6-8 mm or 7-9 mm diameter with length 30 to 40 mm
- Technical success rate & clinical outcome similar with most of the available stent
- Closed cell technology with a smaller cell area results in excellent lesion coverage, plaque containment
- Easy removal of EPD
- Less atherosclerotic plaque prolapse
- Reduce life threatening cerebral embolism

TABLE 39-3	Self-Expanding Carotid Artery Stents					
Stent		Manufacturer	Metal Composition	Design	Tapered Version Available	FDA-Approved
Carotid	WALLSTENT	Boston Scientific	Cobalt chromium	Closed-cell	No	Yes
Expone	ent	Medtronic	Nitinol	Open-cell	No	Yes
Precise		Cordis	Nitinol	Open-cell	No	Yes
Protégé		ev3	Nitinol	Open-cell	No	Yes
AccuLin	ık	Abbott	Nitinol	Open-cell	Yes	Yes
X-Act		Abbott	Nitinol	Closed-cell	Yes	Yes
Zilver		Cook	Nitinol	Open-cell	No	No
Cristallo Ideale Invatec		Invatec	Nitinol	Hybrid	Yes	No

Size Selection of Carotid stent

Stent diameter

= Vessel diameter (a) + 1 or 2 mm

Stent length (b)

Lesion length (c) + 10 mm (i.e. 5 mm on each side)

For symptomatic patients, the post procedural adverse events was lower for closed cell stents (1.3%), compared to open cell stents (6.3%), with a p-value of <0.0001

Post-Procedural Adverse Events: Symptomatic Population ⁹ (p < 0.0001)					
Free cell area comparise	on Odds Ratio	95% C.I.			
2.5-5 mm ² vs. < 2.5 mm ²	² 1.6	[0.2 - 12.3]			
5-7.5 mm ² vs. < 2.5 mm ²	² 4.3	[1.8 - 10.9]			
> 7.5 mm ² vs. < 2.5 mm ²	6.0	[2.7 - 13.1]			
Major Adverse Event Rates By Free Cell Area					
10.0%					
9.0%					
8.0%		7.0%			
7.0%		7.0%			
6.0%	5.2%				
5.0%					
4.0%					
3.0%	1.00/				
2.0% 1.2%	1.9%				
1.0%					
0.0% <2.5mm ² 2.5	- 5mm ² 5 - 7.5mm ²	> 7.5mm ²			

A Subanalysis of the 30 day results from the SPACE clinical trial.¹⁰

The SPACE collaborative group.

- Prospective, randomized multi-center clinical trial of 1,200 patients, comparing CEA⁶ to CAS.
- This subanalysis aims to determine the influence of cell design on the major adverse event rates.

Patients who had a closed cell stent implanted (namely the Carotid WALLSTENT[™]) had lower major adverse event rates (5.9%), compared to patients who received an open cell stent (11.0%), with a p-value of 0.075. Patients who underwent CAS with a closed cell stent had similar major adverse event rates to that of CEA (6.3%).

Procedure	Cell Design	MAE ^{***} Rates
Carotid Endarterectomy (CEA)		6.3% (37/584)
Carotid Artery Stenting (CAS)	Closed Cell	5.9% (26/437)
Carotid Artery Stenting (CAS)	Open Cell	11.0% (14/127)

CELL DESIGN

Distal Embolic Protection Device Recovery Catheter Problems During Carotid Stenting: A Technical Analysis.

S. Myla, L. Jacobs, M. Kleinbart, C. Moore, et al.

A retrospective analysis of 278 CAS cases.

	Closed Cell Stents	Open Cell Stents
Number of cases	120	158
Recovery catheter issues	1	27
% of catheter issues	0.8%	17.1%
Carotid WALLSTENT TM Monorail TM Carotid Stenting Device*		

RADIAL FORCE

The Relationship of Post CAS Hypotension to Stent Type. Barry T. Katzen.

- Retrospective analysis of 256 patients who underwent CAS.
- This study aims to assess whether there is a significant difference in the incidence of peri-procedural hypotension requiring treatment related to stent type used in the carotid artery for de novo lesions.

There was a significant difference in peri-procedural hypotension between slotted tube nitinol stents (11.3%) and Carotid WALLSTENT^M (0%), p = 0.0188. Additionally, there were trends towards significant differences in hypotension at 24 hours that did not achieve statistical significance.

	Slotted Tube Nitinol Stent ⁸	Carotid WALLSTENT	Statistical Significance
Radial Force	High	Moderate	
Peri-procedural Hypotension	11.3%	0%	p=0.0188

- Around 25 % cases the choice of stent should be individualized
- Influenced by arterial anatomy and lesion morphology

Tortuous anatomy

- Stents with greatest flexibility may be preferred
- (open cell Nitinol with large open cell areas & highly
- flexible interconnecting bridges- Precise, Zilver)

Calcified lesions-

- Stents with high radial force
- Moderate outward expansive force
- (Nitinol stents with closed cell design X-Act)
- Lesions with greatest risk of distal embolism
- Stents that provides greatest vessel scaffolding (Closed cell Nitinol or cobalt alloy stents – wallstent, X-Act)

CHOICE OF CAROTID STENT

- Several reports of CAS complications with open cell stents especially in symptomatic patients & those with echo lucent plaque, a large series failed to show any relationship between stent type and CAS stenting complications which was confirmed by RCTs
- Tapered stents may be preferred to avoid the mismatch between CCA &ICA
- Stent type open cell or closed cell does not appear to affect occurrence of complications, it is the lesion morphology

THANK YOU